
C/AL™ Programming Guide
T h e Way t o G r ow

C/AL™ PROGRAMMING GUIDE

NOTICE

This material is for informational purposes only. Navision a/s disclaims all warranties
and conditions with regard to use of the material for other purposes. Navision a/s shall
not, at any time, be liable for any special, direct, indirect or consequential damages,
whether in an action of contract, negligence or other action arising out of or in
connection with the use or performance of the material. This material is subject to
change without notice.

According to Danish copyright legislation it is against the law to reproduce any part of
this material in any form or by any means without the permission of Navision a/s.

The software described is supplied under license and must be used and copied in
accordance with the enclosed license terms and conditions.

COPYRIGHT NOTICE

Copyright © 2002 Navision a/s, Frydenlunds Allé 6, DK-2950 Vedbæk, Denmark.
All rights reserved.

TRADEMARKS

The trademarks referenced herein and marked with either ™ or ® are either
trademarks or registered trademarks of Navision a/s. However, the trademarks
Microsoft, Windows, Windows NT, SQL Server and BackOffice are either registered
trademarks or trademarks of Microsoft Corporation in the United States and/or other
countries.

Any rights not expressly granted herein are reserved.

The trademarks of Navision a/s are listed on this Web site:
http://trademarks.navision.com.

Published by Navision a/s.

Published in Denmark 2002.

DocID: AT-360-DVG-002-v01.00-W1W1

http://trademarks.navision.com

TABLE OF CONTENTS
Chapter 1 Programming Conventions. 1

General C/AL Programming Format . 2

Multilanguage Functionality . 7

C/AL Statements . 10

Miscellaneous . 15

User-Defined Functions. 25

User Messages . 26

Table Locking . 30

Putting Functions in Objects . 32

Chapter 2 Naming Conventions . 33

General Guidelines . 34

Visible Named Items . 35

Other Named Items . 39

Abbreviations. 42

Chapter 3 Numbering Conventions . 43

The Numbering System. 44

Objects . 46

Table Fields . 49

Chapter 4 Developing Add-on Applications 51

Protecting Objects . 52

Changing Base Application Objects - General Guidelines 53

Changing Table Fields. 54

Changing Reports . 55

Changing Form Controls . 56

Changing C/AL Code. 57

Table of Contents

Chapter 1
Programming Conventions

To make it easy to maintain an application, it is important to
follow a few strict guidelines when writing C/AL™ code.
This chapter describes these guidelines.

· General C/AL Programming Format

· Multilanguage Functionality

· C/AL Statements

· Miscellaneous

· User-Defined Functions

· User Messages

· Table Locking

· Putting Functions in Objects

Chapter 1. Programming Conventions
1.1 GENERAL C/AL PROGRAMMING FORMAT

This section describes the general rules for spacing, indentation and use of
parentheses. It also describes how to order expressions and variables and how to
write comments and use symbolic values.

General Rule

If these chapters do not specify what to do in a certain situation, please use the
existing base application as a guide. Consistency is important; each programmer
should not use his or her own special programming styles. In all important aspects, the
Navision Attain® base application follows the guidelines described here.

Code Base
Language

Note that all C/AL code should be entered as English (United States). If all code is in
the same language, it is easier to maintain the application including add-ons in several
countries.

Spacing
There must be exactly one space character on each side of a binary operator such as
assignment or plus.

EXAMPLE

y := (a + b) / 100;

There must be no space between a unary operator and its argument.

EXAMPLE

y := -x;

Refer to multiple dimensions in a record array by using sets of brackets with no space
characters in between.

EXAMPLE

a[i][j] := b;

Do not use blank lines at the beginning or end of any functions.

EXAMPLE

PROCEDURE P();

BEGIN

 x := a;

 y := (a + b) / 100;

END;
2

1.1 General C/AL Programming Format
Alignment
In general, use an indentation of two character spaces.

EXAMPLE

IF a <> '' THEN

 Record.TESTFIELD(b);

Splitting Lines

When you split a C/AL statement into two or more lines, do not align the continuation
lines according to user- or system-defined variables, functions, field names, object
names, and so on. Instead, indent the continuation lines by two characters.

EXAMPLE

Write this:

MyVariable :=

 Variable1 + Variable2 * 2 +

 Variable3 * 3;

Do not write this:

MyVariable := Variable1 + Variable2 * 2 +

 Variable3 * 3;

The second format might look clearer in your program, but the alignment will not hold
if the variable name MyVariable is changed to something shorter or longer in another
national territory version.

.
Note

Although the system-defined variable and function names are not likely to change for

.
the moment, the rule also applies when using them.

Here are some more examples:

EXAMPLE

MyFunction(

 Expression1,Expression2,

 Expression3,Expression4);

EXAMPLE

ERROR(

 StringExpression,

 Expression1,Expression2,Expression3);

EXAMPLE

IF NOT

 SETCURRENTKEY(

 aaaaaaaaaa,bbbbbbbbbb,cccccccccc,

 dddddddddd,eeeeeeeeee)

THEN

 SETCURRENTKEY(bbbbbbbbbb,aaaaaaaaaa);
3

Chapter 1. Programming Conventions
Aligning Parentheses

A left parenthesis in an expression should be aligned with a corresponding
parenthesis on the line above.

EXAMPLE

aaaaaaaaaa :=

 ((xxxxxxxxxxx / yyyyyyyyyyyyy) -

 (1 + zzzzzzzzzz / 100)) *

 100;

EXAMPLE

IF (xxx <> '') AND

 ((A = 1) OR

 (B = 2))

THEN

 ...

Using Parentheses
Do not use parentheses in a function call if the function does not have any
parameters.

EXAMPLE

PostLine;

Use parentheses only to enclose compound expressions inside compound
expressions.

EXAMPLE

IF Boolean1 AND Boolean2 AND (x = y) THEN

 x := a + b

ELSE

 x := b / (a + b);

Comments
Always start comments with // followed by one space character. Never use curly
brackets ({ and }). To emphasize a comment, put it on a separate line and insert one
empty line before it.

EXAMPLE

x := x + 1;

// Comment

x := x * 2;

If the comment is on the same line as the C/AL code, add one space character before
the comment sign.

EXAMPLE

x := '....'; // Comment
4

1.1 General C/AL Programming Format
Use Symbolic Values
Whenever possible, use the name of the option for a field instead of just an integer for
the value.

EXAMPLE (GOOD)

Table.Field := Table.Field::Option;

EXAMPLE (BAD)

Table.Field := 1:

EXAMPLE (GOOD)

IF Table.Field IN[Table.Field::Option1,Table.Field::Option2] THEN
 EXIT;

Whenever possible, use option names instead of hard code values in the conditional
possibilities in a CASE statement.

EXAMPLE

CASE xxx OF

 xxx::aaa,xxx::bbb:

 x := y;

 ELSE

 y := x;

END;

Parameters
Use parameters whenever you need to transfer information to a function.

To use a parameter as an option field, define it in the function. When you call the
function, use an integer as parameter in the call.

EXAMPLE

...

P(0);

...

PROCEDURE P(MyOption : 'Value0,Value1,Value2');

BEGIN

 CASE MyOption OF

 MyOption::Value0:

 x := x * 10;

 MyOption::Value1:

 x := x * 15;

 MyOption::Value2:

 x := x * 20;

 END;

END;
5

Chapter 1. Programming Conventions
Order in Expressions

The variable you are operating on or comparing to something else must always come
first in expressions.

EXAMPLE (GOOD)

IF x <> 0 THEN

 x := x - 100;

EXAMPLE (GOOD)

IF (Date < a) OR (Date > b) THEN

 Date := c;

EXAMPLE (BAD)

IF 0 > x THEN

 x := x - 100;

Order of Variables
Variables should be listed in the following order:

1 Record variables

2 Form variables

3 Report variables

4 Dataport variables

5 Codeunit variables

6 Dialog, file and BLOB variables

7 Simple variables

Record variables are listed in an order that reflects the hierarchy of the tables used in
the database. Base tables come before journals and other non-posted lines and
headers, which themselves come before ledger entries and posted lines and headers.

EXAMPLE

VAR

 GLSetup : Record 98;

 UserSetup : Record 91;

 ItemPostingGr : Record 94;

 Item : Record 27;

 ItemJnlTemplate : Record 82;

 ItemJnlBatch : Record 233;

 ItemJnlLine : Record 83;

 ItemReg : Record 46;

 ItemLedgEntry : Record 32;
6

1.2 Multilanguage Functionality
1.2 MULTILANGUAGE FUNCTIONALITY

Navision Attain is multilanguage enabled. This means changes in the way that
developers work in the application.

The purpose of the multilanguage-enabled environment is to make translation easier
and make it possible to switch from one language to another in the user interface so
that, for example, a German and a Swede can work side by side in their own
languages on the same database.

Rules of Thumb When you develop in a multilanguage-enabled environment, it is important to
remember the following three rules of thumb:

· Everything has a Name property in English (United States).

· Text constants replace text strings such as error messages.

· Everything that the user will see must have a Caption property.

.
Note

Before you start working in a multilanguage-enabled database, you should set the
application language as English (United States). You do this by clicking Tools,

.
Languages and selecting English (United States).

For more information about how to develop multilanguage-enabled applications in
English (United States), see the manual Application Designer’s Guide.

Code Base Language
In Navision Attain, the code base is English (United States). This means that the
Name property of, for example, an object must always be English (United States).

The code base in English (United States) includes, among other things, the following:

· Object names

· Field names

· Function and variable names

· Comments

· Option strings

· Control names

Name Property
As mentioned above, all code should be in English (United States), abbreviated ENU.
The Name property of an object should always be ENU, but it should also never be
visible to the user. In all references to the user interface, you must use the Caption
property instead.
7

Chapter 1. Programming Conventions
For example, if you want to call on a field from the code in connection with a user
message, you will call it by its Name property but make sure that the Caption property
is displayed:

VATPostingSetup.FIELDCAPTION("VAT Calculation Type");

Text Constants
Error messages and other message strings must be entered as text constants. That
way, the message can be easily translated and the users can see the same message
in their own languages.

Text constants will automatically be assigned unique IDs by C/SIDE. You can see the
ID by opening the C/AL Globals window, selecting the text constant and opening its
Properties window.

When you are working in the C/AL Editor window and place the cursor on a text
constant, the content of the text constant will be shown in the message line.

Caption Rather Than Name
The Name property is only used internally and is not translated, so you must never
use the Name property for the user interface; use the Caption property instead.
Remember to think Caption, not Name!

The CaptionML property is what makes it possible to change languages. Everything
must have a CaptionML property where the value is set to the correct term in ENU.
The ENU value is followed by whatever translations there may be of that object.

EXAMPLE

In a Canadian database, Table 37, Field 1 has the following CaptionML values:

ENU=Document Type;FRC=Type document

Option Buttons
When you design an option button, fill in the properties for the control as follows:

Property Value

Name Name of control, for example Control1.

CaptionML Caption of control (option button) in ENU and your local language, for
example ENU=Item Ledger Entry.

OptionValue Caption of control (option button) in ENU, for example ENU=Item
Ledger Entry.
8

1.2 Multilanguage Functionality
Option Strings
When you design a control with an option string, fill in the properties for the control as
follows:

For more information, see the manual Application Designer's Guide.

Property Value

Name Name of control, for example Control1.

CaptionML Caption of control in ENU and your local language, for example
ENU=Source Type.

OptionCaptionML Option string in ENU and your local language, for example
ENU=Sale,Purchase.
9

Chapter 1. Programming Conventions
1.3 C/AL STATEMENTS

This section describes the structure of C/AL statements.

IF-THEN-ELSE
IF and THEN should normally be on the same line. ELSE should be on a separate
line.

EXAMPLE

IF x = y THEN

 x := x + 1

ELSE

 x := -x - 1;

If there are many or long expressions, THEN should be on a new line – aligned with IF.

EXAMPLE

IF (xxxxxxxxxx = yyy) AND

 (aaa = bbbbbbbbbb)

THEN

 x := a

ELSE

 y := b;

When you write IF expressions with THEN and ELSE parts, try to write them so that
the THEN consequence is more probably than the ELSE one.

EXAMPLE

IF condition THEN

 rule

ELSE

 exception

If the IF expression is too complex, reverse the THEN and ELSE parts.

If the last statement in the THEN part of an IF-THEN-ELSE statement is an EXIT or an
ERROR, don’t continue with an ELSE statement.

EXAMPLE

IF x <> y THEN

 EXIT(TRUE);

x := x * 2;

y := y - 1;

EXAMPLE (BAD)

IF x < y THEN

 EXIT(TRUE)

ELSE BEGIN

 x := x * 2;

 y := y - 1;

END;
10

1.3 C/AL Statements
BEGIN-END
When BEGIN follows THEN, ELSE or DO, it should be on the same line, preceded by
one space character.

EXAMPLE

IF (x = y) AND (a = b) THEN BEGIN

 x := a;

 y := b;

END;

EXAMPLE

IF (xxx = yyyyyyyyyy) AND

 (aaaaaaaaaa = bbb)

THEN BEGIN

 x := a;

 x := y;

 a := y;

END ELSE BEGIN

 y := x;

 y := a;

END;

REPEAT-UNTIL
Indentation of REPEAT statements:

Simple case:

REPEAT

 <Statement>;

UNTIL <expr>;

Complex case:

REPEAT

 <Statement>;

UNTIL <expr> AND

 <expr> AND

 <expr>;

REPEAT should always be alone on a line.

EXAMPLE

IF x < y THEN BEGIN

 REPEAT

 x := x + 1;

 a := a - 1;

 UNTIL x = y;

 b := x;

END;
11

Chapter 1. Programming Conventions
WHILE-DO
Indentation of WHILE-DO statements:

This is the format for simple cases (one expression after WHILE):

EXAMPLE

WHILE <expr> DO

 <Statement>;

EXAMPLE

WHILE <expr> DO BEGIN

 <Statement>;

 <Statement>;

END;

This is the format for complex cases (several expressions after WHILE):

EXAMPLE

WHILE <expr> AND

 <expr> AND

 <expr>

DO

 <Statement>;

EXAMPLE

WHILE <expr> AND

 <expr> AND

 <expr>

DO BEGIN

 <Statement>;

 <Statement>:

END;
12

1.3 C/AL Statements
CASE
When you use CASE, indent the possibilities by two character spaces. Two or more
possibilities on the same line are separated by commas (with no spaces), and the last
possibility on a line is immediately followed by a colon (with no preceding space).

The action starts on the line after the possibility, further indented by two character
spaces. If there is a BEGIN, it should be placed on a separate line unless it follows
ELSE. In this case, it should be on the same line as ELSE.

EXAMPLE

CASE Field OF

 Field::A:

 BEGIN

 x := x + 1;

 y := -y - 1;

 END;

 Field::B:

 x := y;

 Field::C,Field::D:

 y := x;

 ELSE BEGIN

 y := x;

 a := b;

 END;

END;

CASE or IF? If there are more than two alternatives, use a CASE statement. Otherwise, use IF.

WITH-DO
When you write WITH-DO statement blocks, be careful when creating one WITH-DO
block within another explicit or implicit WITH-DO block. (Implicit WITH-DO blocks
exist, for example, in table objects and in forms that have been attached to a record.)

The WITH-DO block that you create within another WITH-DO block must always be
attached to a variable of the same type as the variable that is attached to the
surrounding WITH-DO block. Otherwise it can be difficult to see what variable a
member variable or function refers to. Below is a good example of nesting WITH-DO
blocks (both WITH-DO blocks are attached to a “Customer Ledger Entry” record
variable). There is also a bad example, where you cannot directly tell which record
variable the MyField field refers to.

EXAMPLE (GOOD)

WITH CustLedgEntry DO BEGIN

 INSERT;

 ...;

 WITH CustLedgEntry2 DO BEGIN

 INSERT;

 ...;

 END;

END;
13

Chapter 1. Programming Conventions
EXAMPLE (BAD)

WITH CustLedgEntry DO BEGIN

 ...;

 WITH VendLedgEntry DO BEGIN

 MyField := <Some Value>;

 ...;

 END;

END;

Within WITH-DO blocks, do not repeat the name of the object with the member
variable or function. For example, in the following example do not replace the call of
the member function INSERT with MyRecord.INSERT.

EXAMPLE

WITH MyRecord DO BEGIN

 INSERT;

 ...;

END;
14

1.4 Miscellaneous
1.4 MISCELLANEOUS

Keep it Simple
When you program a solution in C/SIDE®, try to keep it simple. This applies to
everything that becomes visible either to other programmers or to any users. Below
are a few simple examples of where you should not complicate a solution.

· If the default value for a property is adequate for a certain purpose, do not make the
default value explicit.

· If a variable can be reset using a statement like

a := 0;

do not use a special C/AL function to do the job. That is, do not do this:

CLEAR(a);

· If the contents of a record can be copied using a statement like

MyRec := MyRec2;

do not use a special C/AL function to do the job. That is, do not do this:

MyRec.TRANSFERFIELDS(MyRec2);

Activating Objects
Generally, when you want to use the value of a field to find a record in a table, or you
want to activate an object identified by the field, make sure that the field actually
contains a value. To do this, use the TESTFIELD function. This will produce more
informative error messages if the value is zero or blank.

EXAMPLE

GLEntry.TESTFIELD("Department Code");

Dept.GET(GLEntry."Department Code");

GenJnlTemplate.TESTFIELD("Report ID");

REPORT.RUN(GenJnlTemplate."Report ID")

Copying Solutions
Sometimes you may wish to achieve the same degree of functionality as exists
somewhere in the base application. We suggest that you copy (using new ID and
Name) objects from the original solution and change the copies, using the steps below
as a pattern.

You could use this method, for example, to implement journal functionality (using
journal template, batch and line tables).
15

Chapter 1. Programming Conventions
Here are the steps you would follow:

1 Start by copying the command button in the main menu that activates the journal
solution you want to copy.

2 See which objects this command button calls (and check that these objects are
specific to the journal).

3 Make a copy of these objects and call them from within your application.

4 Then see which objects are referred to by the objects you have copied (and check
that these objects are specific to the journal), and copy these referred-to objects
too.

5 Change the references to point to the new objects.

6 Continue this recursive process until you have copied all the journal-specific objects
that the main menu command button points to (directly and indirectly).

7 Modify the new objects appropriately. For example, you must decide which fields to
include in the journal line table.

Setting Properties
To set properties from C/AL, use the following style:

"Customer No.".Visible := TRUE;

Cust.MARK := TRUE;

CurrReport.SHOWOUTPUT := TRUE;

Do not write:

Customer." No.".Visible(TRUE);

Cust.MARK(TRUE);

CurrReport.SHOWOUTPUT(TRUE);

Editable=No on FlowField®

Remember to set the property Editable=No on FlowFields unless you want to be able
to enter values in the field. For example, it is possible to enter values in the Budgeted
Amount field in the G/L Account table.

Disabling FIelds

Since a disabled field cannot be included in a form, never release a table with disabled
fields.

Mandatory Primary Key

As default, set the property NotBlank=Yes on the primary key fields in a table. No
other fields in a table should have this property.
16

1.4 Miscellaneous
Validating Table Relations

When you apply the property ValidateTableRelation=No to a field, you should also
apply the property TestTableRelation=No. Otherwise a database test on the field
relations in a database may fail.

Programming Lookups

When programming lookups, do not filter out records that the user might want to
select. Instead, program the record cursor to be positioned on the most relevant
record for the search, even though it may not be first on the list.

When programming the OnLookup trigger for a field, remember that the system will
not call the code in the field’s OnValidate trigger unless you call Field.VALIDATE
explicitly.

Remember also that if errors can occur in the validation, you must operate on a copy
of the Rec-variable (as shown in the example below) instead of directly on Rec.

EXAMPLE

Department Code – OnLookup

WITH Cust DO BEGIN

 Cust := Rec;

 Dept.Code := "Department Code";

 IF FORM.RUNMODAL(O,Dept) = Action::LookupOK THEN BEGIN

 "Department Code" := Dept. Code;

 VALIDATE("Department Code"):

 Rec := Cust:

 END;

END;

Field Lengths
As a rule, use 20 characters for a code field that is likely to be visible to external
companies or organizations. Otherwise, use 10 characters.

Field Type Code or Text
These are the rules for choosing between the types Code and Text:

· If the field is part of a primary key, it should have type Code.

· If the field has a TableRelation, it should have type Code.

· If the field in other ways is assigned values from a Code field, it should have type
Code. (The Document No. field in tables like the G/L Entry table is copied from
the primary key field No. in tables like the Sales Header and Purchase Header.)

· In all other cases, the field should have type Text.

DateFormula Fields containing a date formula must not have data type Code. Instead, use data type
DateFormula. All fields with data type Code must be converted into data type
DateFormula.
17

Chapter 1. Programming Conventions
To assign a value to data type DateFormula, whether it is a field or a variable, you
must use the EVALUATE function.

EXAMPLE

IF FORMAT(Dateformulavariable) = ' ' THEN

EVALUATE(Dateformulavariable, '1W');

You must use the FORMAT function to make a comparison with a text string. If you do
not use this function, the IF statement will fail, because you can not compare
DateFormula with data type Text.

Designing Journal Forms
The default order of fields in journals is:

Date, Document Type, Document No., No., Description, Amount

The order of fields in ledger entry forms should be the same. The order of fields in
forms and reports should also be the same.

Using Subforms
When you add a subform control to a form you should normally set the properties
HorzGlue=Both, VertGlue=Both and Border=No. Remember that the subform control
and the form you refer to must be the same size.

Making Semi-Editable Tabular Forms
Instead of setting the property Editable=No on a tabular form, you can set the property
InlineEditing=Yes on the TableBox. This makes the form semi-editable.

Making Non-Editable Card Forms
To make it possible to delete records on a card form but not possible to edit the field
on the form, set the property Editable=No on the card form’s TabControl, and set the
properties InsertAllowed=No and ModifyAllowed=No on the form.

Table Relations to System Tables
To make Lookup work on a field that has a table relation to a system table, you must
always explicitly set the LookupFormID property on controls showing the field.

Form Evaluation Order
It can be hard to know exactly how triggers in a form are activated. To test what
actually happens, you can add code to the triggers so that a log is written to an
external text file.
18

1.4 Miscellaneous
Translating Objects
When you translate a set of objects or an entire application, you must use correct and
consistent terminology. You must also prevent the translation from adding new errors
to the application.

Follow these steps when you translate the objects to identify any errors that you may
have introduced.

1 Remove Date, Time and Modified flags from the objects.

2 Export the objects to a text file.

3 Use the Tools, Translate functions to translate the objects.

4 Compile the translated objects.

5 Translate the objects back to the original language.

6 Compile the retranslated objects.

7 Remove Date, Time and Modified flags from the objects.

8 Export the objects to a text file.

9 Compare the original object text file with the new one. Any differences are likely to
be due to conflicting translations.

Table Functions
In C/SIDE 1.10 and later versions, it is possible to write functions in table objects and
call these functions from outside the table. Therefore we recommend that all small
functions that were previously located in separate codeunits now be placed in the
tables.

Following this recommendation will make your application more object-oriented
because most functions that manipulate data in a specific table will be defined directly
in the table itself.

FormIDs on Tables
Remember to set the LookupFormID and DrillDownFormID properties on most tables.
You cannot anticipate when a user will need to be able to activate a Lookup or
DrillDown button – for example, if someone makes a report with a filter tab on the
table, the Lookup button on the filter tab will not appear unless the LookupFormID
property is set on the table.

Calculating Totals in Reports
It is important not to calculate manually a total that you want to show in a
TransportHeader or TransportFooter (because you never know whether the
TransportHeader or TransportFooter will be printed before the current record or after
it).
19

Chapter 1. Programming Conventions
Therefore, use the CurrReport.CREATETOTALS function to calculate totals in a
report. Never have code like Sum := Sum + Number in the OnAfterGetRecord trigger
for a data item.

Never Stop in OnModify
The OnModify trigger on a table should never contain code that can stop the user from
recording a change – for example, code for displaying error messages.

That is, if a user has previously changed the contents of some fields in a record, these
changes must always be accepted by the system.

Similarly, in tables where records are entered in forms having the property
DelayedInsert=Yes, any code in an OnInsert trigger should always succeed. This
applies to journal lines, for example.

Placing Fields on Forms
Navision Attain provides you with several features for creating forms that are both
useful and attractive.

If you use tab controls on card forms, you can show many fields without giving a
cluttered impression. And on tabular forms, the facility of hiding/showing columns lets
you hide many fields that are still included - the user can easily see the fields when
needed.

These features make it possible to demonstrate most of the functionality of Navision
Attain and thus ensure a match between the program and the market segment.

This section contains guidelines for which fields to include on forms in Navision Attain
– and in which order. You will find a section about card forms and a section about
tabular forms.

For card forms as well as tabular forms, consistency is important. Similar forms in the
application areas must be composed the same way.

Card Forms

Some card forms are related to a table that contains only a few fields. It is not hard to
create such forms because it is often obvious how to select and place the fields.

Most card forms, however, are related to tables with many fields. It can be difficult to
create these forms, so the guidelines concentrate on them.

Many forms use several tab controls. How many tabs are needed and what to call the
tabs are specific to each form. Two tabs are often used: "General" as the first (and
maybe only) tab and "Invoicing" or "Posting" as the second (sometimes third) tab.

All relevant fields must be included on a card form. Even card forms with many tabs
have a limited space for fields, so you have to consider relevancy carefully. Which
fields to include depends on the purpose of each form. Please note:
20

1.4 Miscellaneous
· Dimensions (such as department, project or location) must always be included.

· Do not include fields that are automatically filled in and do not normally need to be
changed by the user.

· Do not place the same field twice on a form - not even on different tabs.

· If two or more fields are related according to source or function, you should group
them.

Where to place a field also depends on the specific form. Some tabs and fields are
used on many forms, however. For the sake of consistency, please use the location
listed here - unless it is very inappropriate for some reason - if you use one of the
following fields:

Tabular Forms

In general, all fields are included on tabular forms. Some exceptions are mentioned
below. The fields are shown or hidden depending on how relevant they are and what
the layout of the form is.

You must consider the following points when you create tabular forms:

· Dimensions (such as department or project) must always be included. The fields
should normally be hidden.

· FlowFields are calculated even when they are hidden. Therefore, do not include
FlowFields on tabular forms (unless the form is seldom used or the field is
essential).

· Including more than about 25 fields on a form will affect performance. Therefore,
use the possibility of "including all fields but hiding most" very carefully. Because
performance considerations, tabular forms should not include fields that may be
informative but cannot be changed - Posting Group, Journal Name, Weights and
Source Type, for example.

· Never include fields that are used internally in the program, such as Closed by
Entry No.

Tab Field Place

General No., Name, other information about
the account.

The left column starting from the top.

Search Name The top of the right column.

Blocked
Last Date Modified

The last fields in the right column.

Posting or Invoicing General Business Posting Group
General Product Posting Group

The top of the right column. The
fields should be grouped together.

Posting group from the actual
application area.

The top of the right column (though
after any general posting groups).

Department Code
Project Code

The top of the right column (though
after any posting groups). The fields
should be grouped together.
21

Chapter 1. Programming Conventions
Tabular forms are used for all the forms in the Setup menu. Creating these forms does
not typically cause problems because they often contain only a code and a few
information fields.

Tabular forms like journals, sales/purchase lines and ledgers are more difficult to
create and maintain properly because the related tables contain a lot of functionality
and many fields. Which fields to use on a form (and in which order) can be hard to
decide. In W1 the same template is used to compose these forms so that they look
similar. Below is the template.

The template is divided into sections according to functionality. In each section, the
most common field names are mentioned. Please note that the template does not
include all functionality in W1 and that in certain cases in W1 the order indicated in the
template has not been followed.

Section Example of Fields

Dates Posting Date
Document Date

Document Entry Type
Document Type
Document No.

No. (of Account)

Posting Description

Dimensions Department Code
Project Code
Business Unit Code
Location Code
Salesperson/Purchaser Code
Work Type Code
Phase Code
Task Code
Step Code

Currency Currency Code
Exchange Rate

General Posting Setup General Posting Type
General Business Posting Group
General Product Posting Group

Quantity Quantity
Invoiced Quantity
Remaining Quantity
Unit of Measure Code
22

1.4 Miscellaneous
Prices/Cost Direct Unit Cost
Indirect Cost %
Unit Cost
Total Cost
Profit %
Unit Price
Total Price
Price Group Code
Chargeable
The exact name and order depend on the application area.

Amounts Amount
Amount Including VAT
VAT Amount
Remaining Amount
Amounts in LCY must follow each amount type.

Balancing Account Balancing Account Type
Balancing Account No.
Balancing General Posting Type
Balancing General Business Posting Group
Balancing General Product Posting Group

Sales/Purchase and
Discount

Sales/Purchase (LCY)
Profit (LCY)
Line Discount %
Line Discount Amount
Allow Invoice Discount
Invoice Discount Amount

Payment Terms Payment Terms Code
Due Date
Payment Discount Date
Payment Discount %

Application Serial No.
Applies-to Document Type
Applies-to Document No.
Applies-to ID
Applies-to Item Entry
Applies-to Entry
Apply and Close (Job)
Open

Miscellaneous Information Cost Is Adjusted
Cost Posted to G/L
On Hold
Bank Payment Type

Intrastat Transaction Type
Transport Method
Country Code

Section Example of Fields
23

Chapter 1. Programming Conventions
Posting Information Quantity to Ship
Quantity Shipped
Quantity to Invoice
Quantity Invoiced

Audit Information User ID
Source Code
Reason Code
Entry No.

Section Example of Fields
24

1.5 User-Defined Functions
1.5 USER-DEFINED FUNCTIONS

When to Create New Functions

Do not move a piece of code to a new function unless the code is non-trivial and the
new function is afterwards called from more than one place.

When to Create Parameters for a Function

Create for a function only those parameters that are necessary for it to operate on
different data – depending on where it is called from. If a function also changes a
global variable, however, you can transfer the global variable to the function to
indicate that the function will change this variable.

When to Create Local Variables for a Function

You can use additional local variables in the same way that you would use them in
other development languages and environments.

When you create a user-defined function, set the property Local=Yes unless you
actually want to access the function from outside the object.
25

Chapter 1. Programming Conventions
1.6 USER MESSAGES

When you write messages users will see, follow these guidelines:

· Write the messages as correctly as possible according to the guidelines for your
national language. This is the most important rule to follow.

· When you write a message that is similar to one in the ETX file, phrase it to be as
similar to the ETX message as possible. This will make messages consistent
throughout the system.

· Do not use backslashes to indicate line breaks in a message. Windows will usually
do the line formatting. In Dialog.OPEN, however, you must use backslashes in
order for the message to be aligned correctly.

· Use the C/AL functions FIELDNAME and TABLENAME whenever possible so the
user can always recognize a term that indicates a field or table name.

The only exception to this is in Dialog.OPEN. Here you can use the field name
directly; otherwise it may be difficult to align correctly. If you refer to a field name
without using FIELDNAME, type the field name without any single or double
quotation marks.

· Try to write all messages (and other sentences) on one line only. If you need to use
more than one line, try to start each new line after a period rather than in the middle
of a sentence.

· Do not enter the text directly in the C/AL code. Instead, you must enter it as a text
constant so that the message can be translated.

.
Note

There is no naming convention for the text constants. However, you can do as the

.
examples describe.

ERROR, FIELDERROR
The message must describe what is wrong and also how to solve the problem. Write a
short descriptive message; do not use more words than necessary.

Always end ERROR with a period. A period is automatically inserted at the end of
FIELDERROR. After ERROR, enter a reference to the text constant and create the
text constant in the C/AL Globals window.

For more information, see the manual Application Designer’s Guide.

EXAMPLE

In the C/AL Editor, enter the following:

ERROR(

 Text1000);

Then, in the C/AL Globals window, enter the message as a text constant with name
value=Text1000 and ConstValue=%1 must be specified.
26

1.6 User Messages
Or:

IF FileName = ' ' THEN
 ERROR(Text1001);

where the ConstValue of the text constant is:

................. %1 ... %2.',FIELDNAME(Field1),Field1);

Tell the user when he or she must or cannot do something, so it is clear what action
must be taken.

EXAMPLE

ERROR(Text1002)

ConstValue=You cannot...

EXAMPLE

ERROR(Text1003)

ConstValue=You must enter the ...

Use the present rather than the past tense.

EXAMPLE

ERROR(Text1004)

ConstValue=There is nothing to post.

MESSAGE
Always end MESSAGE with a period.

Supply the user with a message when the system has finished doing something. Write
the message in the past tense.

EXAMPLE

In the C/AL Editor, enter the following:

MESSAGE(Text1000);

Then, in the C/AL Globals window, enter the message as a text constant with name
value=Text1000 and ConstValue=The journal lines were successfully posted.

CONFIRM
Always end CONFIRM messages with a question mark.

EXAMPLE

IF NOT CONFIRM(Text1010) THEN

 EXIT;

ConstValue=Do you want to continue?
27

Chapter 1. Programming Conventions
Dialog.OPEN
Use Dialog.OPEN only to indicate that the system is doing something. If possible, use
a progress indicator. Enter the actual message as a text constant as mentioned
above.

When you enter the message, use the active voice. (For example, say “Processing
items” rather than “Items are being processed.”)

End a message statement with an ellipsis (three periods) to indicate that the system is
doing something.

Use two backslashes at the end of a line in a message to insert extra space before the
next lines. These subsequent lines (if there are any) tell what is actually being
processed.

The #-fields are aligned to the left with at least one space character between the
longest text and #. There is also at least one space character between the #- and @-
fields.

The text before #- and @-fields must always span at least 16 characters, including a
final space character. This means that you will need to add extra space characters if
your text is less than 15 characters long.

EXAMPLE

Window.OPEN(Text1011);

ConstValue=Processing items...

EXAMPLE

Window.OPEN(Text1012)

ConstValue=Processing items...\\Account 123456\Date010101

EXAMPLE

Window.OPEN(Text1012)

ConstValue=Batch Name 123456\\Checking lines #2######
@5@@@@@@@@@@@@@\Checking balance #3######
@5@@@@@@@@@@@@@\Posting lines #4######
@5@@@@@@@@@@@@@

The character lengths for the # and @-fields are displayed in the table below.

Data Type Field Length

Boolean 8

Code 12

Date 8

Decimal (default) 12

Decimal (percentage) 8
28

1.6 User Messages
Table Access
If it is necessary to change the key before accessing a table in the database, first set
the correct key, then set the correct filters, and finally, access the table.

Put only the necessary key fields in a call of SETCURRENTKEY. That is, if the table
order is not important, use only the fields that are used in the subsequent calls of
SETRANGE and SETFILTER. This makes it possible to change the definition of the
key (as long as it still includes the fields mentioned in the call of SETCURRENTKEY –
in the order given) without having to change any code.

EXAMPLE

Rec.RESET;

Rec.SETCURRENTKEY(Field1,Field2);

Rec.SETRANGE(Field1,x);

Rec.SETRANGE(Field2,y);

Rec.FIND('-');

In the example, a possible key is Field 1, Field2, Field 3. Without changing the code
above, the key could be changed to Field1, Field3, Field2.

Integer 8

Option Field 12

Progress Indicator 15

Text 25

Time 8

Data Type Field Length
29

Chapter 1. Programming Conventions
1.7 TABLE LOCKING

To avoid deadlock and maintain consistency in the database, certain rules must be
observed. The Navision Attain database has a deadlock protection that prevents the
entire system from locking up.

Locking Orders
 To prevent individual users from experiencing deadlock, however, certain tables must
be locked in a specific order. In the base application, there are four main groups of
tables to consider:

· Journals

· Non-posted lines and headers

· Posted lines and headers

· Ledger entries and registers

Journals

The main rule in Navision Attain is always to lock tables on the lowest level first. A
journal has three levels: templates are on the highest level and lines on the lowest.
Batch names are in between. When a journal template is to be deleted, the application
will first delete the journal lines and thereby implicitly lock them. It will then repeat the
process with the batch names. Finally, the template can be deleted. The rule results in
this locking order:

1 Journal line

2 Batch name

3 Journal template

Non-Posted Lines and Headers

Because database consistency in the application is very important, there is another
rule that must be followed when sales lines are locked before the corresponding sales
header. When a user tries to insert a new sales line, the Sales Line table is
automatically locked. Another user cannot delete the sales header at the exact same
time, because the sales lines have to be deleted before a sales header can be
deleted. Because of this, there will never be sales lines without a corresponding sales
header. The same is true for purchase headers and lines. The locking order is as
follows:

1 Sales Line table/Purchase Line table

2 Sales Header table/Purchase Header table

Posted Lines and Headers

You must also respect a locking order when working with both posted headers and
lines and with headers and lines that are not yet posted. The main principles are that
posted headers are locked before posted lines, and purchase tables are locked before
30

1.7 Table Locking
sales tables. Posted tables are locked before non-posted tables. These principles
result in the following locking order:

1 Purch. Rcpt. Header

2 Purch. Rcpt. Line

3 Sales Shipment Header

4 Sales Shipment Line

5 Sales Invoice Header/Sales Cr. Memo Header/Purch. Inv. Header/
Purch. Cr. Memo Hdr.

6 Sales Invoice Line/Sales Cr. Memo Line/Purch. Inv. Line/
Purch. Cr. Memo Line

7 Purchase Line

8 Purchase Header

9 Sales Line

10Sales Header

Ledger Entries and Registers

A ledger entry table must always be locked before its corresponding register table, for
example, G/L Entry before G/L Register.
31

Chapter 1. Programming Conventions
1.8 PUTTING FUNCTIONS IN OBJECTS

When you write a function, you will often need user input such as the value, key or
filter of a table record in a form. In these cases, attach the table to a codeunit and put
the function in the OnRun trigger, so that the function can be activated directly from a
form using the Property Sheet. That is, unless it is absolutely necessary, don’t force
people to write C/AL code in order to use your objects when they design forms.

If you want to provide the user with more filtering and sorting possibilities or other
option settings before starting a function, use a report object (with the property
ProcessingOnly=Yes), unless a single call of CONFIRM or STRMENU to ask for user
information will do.
32

Chapter 2
Naming Conventions

Precise and consistent terminology helps the end user work
with the application. Rules for naming and abbreviating
everything will also help programmers gain an
understanding of the base application and develop new
features faster.

This chapter contains guidelines for naming everything in
your application – that is, objects, table fields, variables,
and so on.

· General Guidelines

· Visible Named Items

· Other Named Items

· Abbreviations

Chapter 2. Naming Conventions
2.1 GENERAL GUIDELINES

Use the existing terminology whenever possible.

Everything in a set of objects must be named in the same language.

This chapter describes naming conventions in English (United States). For more
information about establishing naming conventions in your own language, see the
guide Terminology Handbook on the Navision Attain localization CD.

.
Note

Whenever you review the terminology in a set of objects, use the Tools, Translate,
Export/Import functions in C/SIDE. Export the texts to a text file to review them, and

.
then import the text file into C/SIDE.
34

2.2 Visible Named Items
2.2 VISIBLE NAMED ITEMS

This section describes naming of all visible items in an application such as table fields
– that is, all those items that might be presented to a Navision Attain user.

Naming Objects
Two objects of the same type must not have the same name.

In general, each object must be named in a way that leaves no doubt as to what it is
concerned with (for example, an object can be specifically related to customers, items
or resources). Do not name a table “Status,” for example, because the word Status is
too general and could refer to something in almost every table.

Table Objects

Table objects are always named in the singular. That is, the table name corresponds
to what one record in the table is called.

Form Objects

The name of a form depends on the form type. A card form has the singular form of
the table name; a tabular form has the plural form of the table name. This gives the
users an idea of the type of form they have selected or that will be presented. If a table
can be accessed by both a card form and a tabular form, the form names should
explicitly describe the form types (for example, Item Card and Item List). This tells the
user that there is more than one way to access the table. Other form types (statistics,
for example) are given names that are as descriptive as possible.

Report Objects

Users see names of report objects when they need to identify a sales invoice, for
example, or when they modify or create reports. Object names also appear in the
request window. This is why these should be as descriptive as possible and not
include abbreviations. Whenever possible, the object name should be the same as the
heading in the actual report.

Table Fields
A field name should be as descriptive as possible and should be able to stand alone;
that is, the user should not need to see the field name in the context of other fields in
order to understand what it is.

Describe Field
Contents and Field
Type

The field contents and the field type should be described in the field name. For
example:

· Include “Date” when you name a date field: Posting Date, for example. The
exception is a date interval: Allow Posting From, for example.

· If the field contains a percentage, include this. Percent is displayed with the percent
sign: Profit %, for example.
35

Chapter 2. Naming Conventions
· Include “Quantity” (or “Qty.”) when you name a quantity field: Quantity Shipped,
for example. Replace quantity with “No.” when referring to the number of entries:
No. Printed and No. of New Records, for example.

· Include “Amount” (or “Amt.”) when you name an amount field: Debit Amount, for
example.

Amount, Cost and
Price

On the other hand, do distinguish between amount and cost or price. Cost and
price are typically used when naming an amount per unit, while amount is cost or
price multiplied by quantity.

“Amount” can also be omitted when the following words are included in the field
name:

· “Amount” becomes “Amounts” in the name of a FlowField: Invoice Amounts, for
example.

· When there is some doubt about whether an amount field is in the local currency (in
the Cust. Ledger Entry table, for example), the fields in local currency should
have names that end with the ISO currency code for the country, in parentheses.
For the worldwide version, LCY (Local Currency) is used: Sales (LCY), for
example. If there is a symbol for a country’s currency, it can be used instead: Sales
($). These fields will not ordinarily be included in the forms, so users will not be
confused by the (LCY).

· If the field contains parentheses, put a space character before the parentheses:
Usage (Price), for example.

· Formulate names for boolean fields as positive questions or statements: Cost is
Adjusted, for example.

Adj. (LCY)

Balance

Base

Charge

COGS

Discounts

Fee

Net Change

Payments

Profit

Purchases

Sales

Usage
36

2.2 Visible Named Items
No. and Code For many tables, the primary key is a code, and the field that contains it is just called
Code. Exceptions to this are the main tables listed below, where the user will typically
use numeric values as keys. Because of this, the field is called No. even though the
field type is still code.

Table Relations With table relations, base the field name on the table and its primary key – for
example, Project Code and Pay-to Vendor No.

Exceptions to this are relations to G/L accounts and posting groups:

· A field name that refers to a G/L Account always ends with “Account” (or “Acc.”),
never with “G/L Account No.” An example of this is Inventory Account.

An exception is when the field name refers to the actual G/L Account – for example,
G/L Account No. in the G/L Entry table. Account No. is also used in the General
Journal. This field can contain either a G/L account number, a customer number or
a vendor number. (Only in this situation are customers and vendors also considered
to be accounts.)

· When a field has a table relation to a posting group table, the field is called Posting
Group.

From/To,
Starting/Ending,
First/Last and
Before/After

Use From, To, Starting, Ending, First, Last, Before and After in field names as follows:

From/To Use From or To when referring to a line number in a ledger entry table:
From Entry No., for example.

Starting/Ending Starting Date is used as a “valid-from” date; Ending Date means
“valid until.”

First/Last First means the earliest. Last means the latest: Last Sales Inv. No., for
example.

Before/After Use Before or After with an amount before or after a calculation:
Amount Added Before, for example.

G/L Account

Customer

Vendor

Item

Item Group

Resource

Resource Group

Job

Purchase Header

Sales Header
37

Chapter 2. Naming Conventions
Form Buttons
Captions for command and menu buttons (and for the menu items on a menu button)
depend on whether the control is used as a routing choice to open another form or as
a control to activate something.

Routing Choice

The first menu button on a card, tabular or list form normally bears the name of the
corresponding table. A menu item below this is considered to be the second part of
the full name of the form that will be opened when the control is clicked. For example,
the caption for a menu button is “Customer”, one of the menu items is “Statistics”, and
the form which is about to be opened is named “Customer Statistics”.

When option buttons are used on the main menu form with the property ButtonBorder
set to Yes, the caption for these controls is the name of the application module.

Action Choice

When a control is used to activate something, the caption for it must be a verb in the
imperative: Check, for example. If a form has many action controls, they can be
gathered as menu items on one menu button called Function or Posting, for example.
38

2.3 Other Named Items
2.3 OTHER NAMED ITEMS

This section describes naming of “internal” items, that is, naming that is not visible to a
Navision Attain user. An example is naming of variables.

Codeunit Objects
A codeunit is named almost like a report except that it starts with the object that the
codeunit processes, followed by a dash. The object is normally a record abbreviated
as a variable (see rules for this later). The description of the codeunit is written in the
imperative (without abbreviations if possible): Purch-Explode BOM, for example.

Variables
Blanks, periods and other characters (such as parentheses) that would make
quotation marks around a variable necessary must be omitted. For example, the
periods and blanks are omitted in GenJnlBatch. In addition, currency unit signs, such
as $, should be replaced by the corresponding currency unit code: AmountUSD, for
example.

This alone is not enough to make a variable unique (that is, not the same as the
corresponding field name). The variable is not necessarily unique when translated to
another language.

A variable must begin with a capital letter. If a variable is a compound of two or more
words or abbreviations, each word or abbreviation should begin with a capital letter.

The name of a variable should describe its usage wherever possible. If necessary, you
can start with the table name: CustInvDiscAmountLCY, for example. In a form for a
report, if there are several variables that would otherwise have the same name, use
appropriate prefixes or suffixes to differentiate them: EnteredPostingDate (prefix is
“Entered”), for example.

When naming variables, follow country-specific rules for abbreviations.

When setting up table and field variables, give the variable the same name as the
table or field, following the rules above.

If a variable with the same name already exists, add the suffix 2 to the variable name.
If a variable with this name also exists, use 3 instead, and so on. Use these numbers
only be if you cannot establish a unique variable in another way. NewCustLedgEntry is
better than CustLedgEntry2, for example.

When you want to use a variable to store a value temporarily, start with Temp:
TempType, for example. Old and New can be used as prefixes for record variables
when you use these for old tables and new tables. Do not use “x” as a prefix. This is
used only in table triggers, where the record variable is created automatically by the
development environment.

The name of a variable that is used for totaling should include “Total” – but not
necessarily as a prefix.
39

Chapter 2. Naming Conventions
Usage of From/To, Starting/Ending, First/Last and Before/After follows the same
guidelines as described for table fields on page 37. For variables, follow these
guidelines:

From/To Use From or To when copying from or to a table.

Starting/Ending Use Starting or Ending with dates and positions.

First/Last Use First or Last when you mean the first (or last) record in a table or line
in a journal. You can also use it as a flag to indicate that this is the first record that is
processed: FirstOrder, for example.

Variables that refer to codeunits and reports must be named exactly like the object
being referred to. Only characters that would require quotation marks must be
removed.

Parameters and Local Variables

Parameters and local variables have their own number series, so do not call a
parameter GenJnlLine4, for example, because a global variable called GenJnlLine3
already exists.

Object Variables
When a variable is of the object type (Record, Form, Report, Dataport or Codeunit)
and the object has a name that also functions as a field name or local function name,
you can give the variable name the suffix Rec, Form, Report, Dataport or Codeunit.

EXAMPLE

VAR

SourceCodeRec : Record "Source Code";

SourceCode : Code(10);

Since “Source Code” is the name of a table as well as the name of a field in other
tables, using the name “SourceCode” for variables holding the two different kinds of
information would be confusing.

User-Defined Functions
When naming user-defined functions, start if possible with a verb in the imperative:
ApplyCustLedgEntry, for example.

Usage of function name prefixes:

· If the code posts something, use “Post” as a prefix.

· If the code makes something, use “Make” as a prefix.

· If the code inserts something, use “Insert” as a prefix.

· If something is checked, use “Check” as a prefix.
40

2.3 Other Named Items
Form Controls
Do not give a form control a name unless you want to refer to it in your C/AL code.
When it is necessary to name it, prefix the name with the abbreviated name of the
associated table or form.
41

Chapter 2. Naming Conventions
2.4 ABBREVIATIONS

To see the abbreviations that are used in the worldwide application, you can print a list
from the Terminology Database (in Notes). For more information, see the guide
Terminology Handbook on the Navision Attain localization CD.
42

Chapter 3
Numbering Conventions

Programmers will be able to understand the base
application and develop new features more quickly if they
familiarize themselves with the guidelines for numbering
objects and fields.

Each object and field in C/SIDE is identified by a number
stored in its ID property. This chapter starts by describing
the numbering system for the entire development system.
Numbering conventions used in the base application are
also described, as well as some guidelines that can be
used outside the base application.

· The Numbering System

· Objects

· Table Fields

Chapter 3. Numbering Conventions
3.1 THE NUMBERING SYSTEM

Objects
The objects in C/SIDE are grouped as indicated in the table below:

.
Note

Even though they lie in the Customer Design Area, do not use the object numbers

.
99,000–99,999 because the training material for Navision Attain use these numbers.

Fields
The fields in C/SIDE are grouped as indicated in the table below:

Object Number Interval Description

1–9,999 Base Application Design Area

10,000–49,999 Country Design Area

50,000–99,999 Customer Design Area

100,000–999,999,999 Navision Development Partner Design Area

Table Numbers Field Numbers Description

1–9,999 1–9,999 Base Application Design Area

10,000–49,999 Country Design Area

50,000–99,999 Customer Design Area

100,000–999,999,999 Navision Development Partner Design Area

10,000–49,999 1–49,999 Country Design Area

50,000–99,999 Customer Design Area

100,000–999,999,999 Navision Development Partner Design Area

50,000–99,999 1–999,999,999 Customer Design Area

100,000–
999,999,999

1–9,999 Navision Development Partner Design Area

10,000–49,999 Country Design Area

50,000–99,999 Customer Design Area

100,000–999,999,999 Navision Development Partner Design Area
44

3.1 The Numbering System
.
Note

Even though they lie in the Customer Design Area, do not use the field numbers
99,000–99,999 in tables numbered between 1 and 49,999 because the training
materials for Navision Attain use these numbers.

When a Navision Development Partner buys the insert permissions for a table number
interval (for example 200,000–200,099), he or she also gets insert permissions for the
same number interval (200,000–200,099) for fields in all other tables. Although the
creator of a table could in fact create fields in all field number intervals in the tables for
which he or she has purchased insert permissions, only the recommended field
numbers should be used. Otherwise fields in solutions from different vendors can

.
interfere with each other.
45

Chapter 3. Numbering Conventions
3.2 OBJECTS

The numbering conventions for objects depend on the object type.

Tables
Table object numbers are not divided into intervals in the Navision Attain base
application. Use the first available object number when you create a table. Try to
group related tables together.

Forms
Form object numbers are not divided into intervals in the Navision Attain base
application. Use the first available object number when you create a form. Try to group
related forms together.

Reports
Report objects are numbered in intervals in the Navision Attain base application.
There is an interval for each application area. See the list below.

Report Number
Interval

Application Areas

1–99 G/L, including VAT and Consolidation

100–199 Accounts Receivable

200–299 Sales

300–399 Accounts Payable

400–499 Purchases

500–599 Common to both Purchases and Sales including Exchange Rate

600–699 Requisition

700–799 Item, including IntraStat

800–899 Bill of Materials

900–999 Item Group

1,000–1,099 Inventory (common to Item, BOM and Item Group)

1,100–1,199 Resource

1,200–1,299 Job

1,300–1,399 General

1,400–9,899 Future areas

9,900–9,999 Utilities
46

3.2 Objects
When you create a new report that does not belong in one of the existing application
areas, use a number from a new interval (of length 100) between 1,400–9,9899. This
can also be necessary if an interval is full.

.
Note

Reports made by local Navision® a/s offices, Navision® Development Partners and
Navision® Solution Centers cannot use the numbering intervals specified above.

.
Instead, they must use their own numbering intervals.

Reports and Batch Jobs

If a report object can print, obviously it is called a report. Otherwise, it is called a batch
job. Reports are numbered starting at the lower end of the interval. Batch jobs are
numbered starting at the higher end, with decreasing numbers.

Similar Reports

Almost-identical reports within the application areas are numbered when possible with
the same two final digits, even if the report name is not the same. For example, the
Sales Invoice report is number 206 and the similar Purchase Invoice report is number
406. Other examples are the date compression batch jobs for ledger entry tables,
which always end with 98, and date compressions for budget entries, which always
end with 97. This practice may cause gaps in the numbering sequence, but it helps the
programmer when adjustments to similar reports elsewhere in the application are
needed.

Codeunits
Codeunit object numbers are not divided into intervals. Use the first available object
number when you create a codeunit. Try to group related codeunits together.

Journal Posting Codeunits

The journal posting codeunits follow a pattern that makes it easier to understand a
new journal once you are familiar with one group of journal posting codeunits.

A group consists of two parts. Codeunits in the first part post a journal, and those in
the second part manage the journals.

Codeunit Final Digit Journal Posting Codeunits

1 Journal Line–Check

2 Journal Line–Post

3 Batch Name–Post
47

Chapter 3. Numbering Conventions
Invoices

Codeunits for posting invoices and so on have a system, too:

When you create codeunits for the sales application areas, use the same final digit for
similar purchase application areas.

Codeunit Final Digit Journal Managing Codeunits

0 Journal–Management

1 Journal–Post

2 Journal–Post+Print

3 Journal–Batch Post

4 Journal–Batch Post+Print

5 Register–Show Ledger

Codeunit Final Digit Sales/Purchase Posting Codeunits

0 Sales/Purchase–Post

1 Sales/Purchase–Post (Yes/No)

2 Sales/Purchase–Post+Print
48

3.3 Table Fields
3.3 TABLE FIELDS

When you assign numbers to new fields in a table, consider whether the table is
associated with other related tables. If so, the fields should often be added to these
tables as well. In this case, the field must have the same field number in all of the
tables. If you add a new field to the Customer table, for example, but you do not add
the field to the Vendor table, you still have to reserve that field number in the Vendor
table for the Customer field. It is easier to maintain the application when the tables
look very similar.

Examples of associated tables are:

· Customer and Vendor tables

· Journal Template tables

· Batch Name tables

· Journal Line tables

· Sales Header, Sales Shipment Header, Sales Invoice Header and Sales
Credit Memo Header tables

· Purchase Line, Purchase Receipt Line, Purchase Invoice Line and Purchase
Credit Memo Line tables

When you create a new independent table, do not leave gaps in the numbering of the
fields.
49

Chapter 3. Numbering Conventions
50

Chapter 4
Developing Add-on Applications

Many questions arise in connection with the development
of add-on applications for Navision Attain.

When you develop an add-on application for the Navision
Attain base application, you will always need to make some
changes in it. These changes can vary from a simple menu
button on one of the menus to more complicated changes
in the tables and the associated C/AL code for existing
objects. One goal for an add-on application developer must
be to develop the application in a way that makes
independent updates of the base application plus one or
more add-on applications as automatic as possible, so that
the customer does not need not to hire consultants to take
care of an update.

We will concentrate on the following points, giving the
recommendation of Navision a/s in each area:

· Protecting Objects

· Changing Base Application Objects - General
Guideliness

· Changing Table Fields

· Changing Reports

· Changing Form Controls

· Changing C/AL Code

Chapter 4. Developing Add-on Applications
4.1 PROTECTING OBJECTS

Navision a/s recommends that you do not protect your code because in the future we
are moving toward, things will be more and more open.

In connection with copyright considerations, remember that add-on applications are
associated with protected license areas that ensure a steady income flow. Navision
a/s has, for example, set the price of the base application low enough and the price of
objects in the custom area high enough that programming a new customer application
is not attractive.

Navision a/s intends the authorization process for new add-on applications to ensure
that a new application will not resemble an existing one too closely.

For example, let’s say that in industry A, a certain developer has offered add-on
application 1 for a period of time. Now another developer wants to offer add-on
application 2 for the same industry. The applications resemble each other very much,
and some of the source code is almost identical. In this case, Navision a/s will not
approve application 2. On the other hand, if a third developer produces add-on
application 3 that is for the same industry but has very different functionality from
application 1, Navision a/s will approve application 3 as long as the guidelines and
other rules are followed.

There can, however, be situations in which outside demands require protecting
particular objects. Certain institutions (such as banks, tax authorities and so on) may
have requirements that some code be approved and protected; if you change this type
of code, you will have to get the product approval renewed.
52

4.2 Changing Base Application Objects - General Guidelines
4.2 CHANGING BASE APPLICATION OBJECTS - GENERAL GUIDELINES

Because the entire application is programmed in C/AL, the 4th generation
programming language for Navision Attain, the application code is open and
accessible. The openness makes it particularly easy to program add-on applications,
but an open program interface also means that there can be situations where add-on
applications come to interfere with existing objects in the base application.

Before any changes are actually made, it is important for the developer to have a clear
idea of how changes in the base objects will be undertaken and how the changes will
be documented, so that there will be uniform documentation for other developers who
will maintain the system.

Navision a/s has the following guidelines that must be followed for fields, form controls
and C/AL code that affect the Navision Attain base application.

· Keep changes to base objects to an absolute minimum. Each change you make to
a base object will cost your customers money when future updates are needed.

· To modify an object other than a report, make your changes directly in the existing
object. It will be best to do this in the case of reports, too, but if you want to make
substantial changes in a report, you may copy the original report and modify the
copy.

Navision a/s plans to develop and maintain tools that will simplify the work involved in
updating add-on applications when new versions of the base application are released.

Navision a/s intends to publish recommendations about maintaining a log that
describes how add-on applications and customer-specific modifications affect the
application.

If you must make changes in the base application, Navision a/s recommends that you
follow the rules in the following sections.
53

Chapter 4. Developing Add-on Applications
4.3 CHANGING TABLE FIELDS

Updates of Navision Attain will not affect new fields that have been added to existing
tables. That is, the new fields and their properties will be left intact.

Because the fields are defined by field number, the field number is itself a type of
documentation, but it is a good idea to indicate the relationship to the add-on
application in the Description field on the Property Sheet.

Navision a/s recommends that you have your add-on application approved; you will
then be assigned a reserved number series for the add-on application.
54

4.4 Changing Reports
4.4 CHANGING REPORTS

A Report object in C/SIDE covers two groups of objects in the application:

· Reports

· Batch Jobs

Reports

Reports are usually programmed in order that data can be visualized and printed out
on paper.

Examples of this type of report are Invoice and Inventory - Reorders.

Batch Jobs

Batch jobs perform functions that make bookkeeping changes.

Batch jobs are generally integrated into the rest of the application (much more so than
reports). Therefore, Navision a/s recommends that you make changes in the existing
object, as described before.

Examples of batch jobs are Inventory Reorder and Post Inventory Cost to G/L.
55

Chapter 4. Developing Add-on Applications
4.5 CHANGING FORM CONTROLS

Navision Attain does not directly manage the integration of controls and their
properties, so it is recommended that you describe these changes in a log that
registers the way that this system deviates from the base application.

Navision a/s recommends that you not copy existing forms containing customer-
specific modifications because if you do, other parts of the base application and other
add-on applications will usually have to be changed in order to run these forms.

If two add-on applications will use the same form, it will be an advantage to make
changes in the base application because it would be inconvenient to have a form for
each add-on application.

In forms and reports, we recommend that you give a short description of the
functionality that has been added, as illustrated below:

Documentation()

24-12-94,PCC,JLH

Controls 46..51 for production application

entered.
56

4.6 Changing C/AL Code
4.6 CHANGING C/AL CODE

The general point of view of Navision a/s is that C/AL code of more than one line must
always be moved to external codeunits so that it is only calls to them that appear in
the C/AL code for the base application.

In this way, Navision a/s will ensure that the applications will be well-suited to meet
any requirements that may arise in the future.

The example below will show how we imagine this will work.

The example is taken from the Sales Line table where the customer has had three
new fields created: 50000, Height; 50001, Width; and 50002, Length. When
something is entered in these fields, Quantity will be recalculated. The solution
requires changes to be made in the C/AL code for the Sales Line table, and Navision
a/s recommends that you create a codeunit 50000, Calculations, for the calculation.

The codeunit has the following contents:

The Sales Line table has had the following postprocessing code added for the three
new fields:

A global variable has been set up in the Sales Line table that refers to the new
codeunit 50000, Calculations. Advantages to this construction are that things like
statistics forms can also use the codeunit and that only a limited amount of code in
Sales Line will need to be changed if the object has to be updated later on.

Codeunit 50000 Calculations

Documentation()

OnRun()

Volume(Height : Decimal;Width : Decimal;Length : Decimal) : Decimal

ReturnValue := Height * Width * Length;

EXIT(ReturnValue);

37 Sales Line

Height - OnValidate()

VALIDATE(Quantity,Calculations.Volume(Height,Width,Length));

Width - OnValidate()

VALIDATE(Quantity,Calculations.Volume(Height,Width,Length));

Length - OnValidate()

VALIDATE(Quantity,Calculations.Volume(Height,Width,Length));
57

Chapter 4. Developing Add-on Applications
We recommend that you use the C/AL editor to give a short description of the
functionality that has been added to each object, as illustrated below:

Documentation()

24-12-94,PCC,JLH

C/AL code for the fields 50000,50001,50002

(Height,Width,Length) is entered with the call to

codeunit 50000 Calculations,Volume that

returns the volume
58

INDEX
Symbols
fields

alignment . 28
#-fields

length . 28
@ fields

alignment . 28
@-fields

length . 28

A
abbreviations

in C/AL . 42
accessing tables in database 29
alignment

indentation . 3
parentheses . 4
split lines . 3
user messages 26

Amount
in field names 36

B
batch jobs

numbering . 47
batch names

journal . 30
BEGIN

with CASE . 13
BEGIN-END

line placement 11
blank lines

use of . 2
ButtonBorder . 38
buttons

captions . 38

C
C/AL statements

structure . 10
caption

control . 38
multilanguage 8

CaptionML . 8
card form

naming . 35
card forms

non-editable 18
CASE

indentation . 13
line placement 13
or IF . 13
structure of . 13
with BEGIN . 13
with ELSE . 13

CASE statements
option names in 5

Code (field type) 17
code base language 7
codeunits

naming . 39
numbering . 47

command buttons
captions . 38

comment
indicating . 4
spacing . 4

CONFIRM . 32
question mark with 27

consistency . 2
control

caption in imperative 38
copying

from base application 15
Cost

in field names 36

D
data type

DateFormula 17
DateFormula . 17
deadlock . 30
DelayedInsert . 20
Dialog.OPEN . 26

active voice in message 28
when to use . 28

DrillDown button 19
DrillDownFormID 19

E
Editable . 16, 18
ELSE

with CASE . 13
ERROR . 26
error message

format . 26
instructions in 27

error messages
creating informative 15

EVALUATE . 18
expressions

order in . 6
order of . 2

F
field

choosing type 17
disabling . 16
length . 17

Index
field names
using option names 5

FIELDERROR 26
FIELDNAME . 26
fields

creating in related tables 49
naming . 35, 37
naming and table relations 37
numbering 44, 45
order in journals 18

form controls
naming . 41

FORMAT . 18
forms

naming . 35
numbering . 46

function
creating parameters for 25
putting in object 32
user-defined 25

functions
user-defined, naming 40

G
general rules . 34

H
headers (non-posted)

locking order 30

I
IF

or CASE . 13
IF-THEN-ELSE

omitting ELSE 10
order of consequences 10
structure . 10

indentation . 2
general . 3

indenting
split lines . 3

InlineEditing . 18
InsertAllowed . 18
invoice posting codeunits

numbering . 48

J
journal

locking order 30
table levels in 30

journal posting codeunits
numbering . 47

journals
field order in 18

K
key

primary . 16

L
language

code base . 7
working in a multilanguage enabled
environment . 7

ledger entry and register
locking order 31

lines
journal . 30

lines (non-posted)
locking order 30

Local . 25
local variables . 25

numbers in names 40
locking order

journals . 30
ledger entry and register 31
lines and headers 30
posted/unposted tables 30

locking, table see table locking
Lookup button . 19
LookUpFormID 18
LookupFormID 19
lookups

programming 17

M
main menu

option buttons on 38
menu button

names at different levels 38
menu buttons

captions . 38
menu items (on button)

captions . 38
MESSAGE

format . 27
when to use . 27

messages
alignment . 26
entering . 8
format of . 26
line breaks in 26
writing for users 26

ModifyAllowed 18
multilanguage . 7

N
non-editable card forms 18

O
object

activating . 15
object variables

naming . 40
objects . 19

finding errors in translation 19
naming . 35
numbering 44, 46

Index
OnInsert trigger 20
OnModify trigger

not stopping in 20
OnRun trigger

putting a function in 32
Open

DIALOG
message format 28

option buttons
multilanguage 8
on main menu 38

option field
using a parameter 5

option names
for field names 5
in CASE statements 5

option string
multilanguage 9

order
expressions . 6
form evaluation

form evaluation order 18
record variables 6
variables . 6

P
parameter

as option field 5
when to use . 5

parameters
creating . 25
numbers in names 40

parentheses . 2
aligning . 4
in compound expressions 4
in function calls 4

posted tables
locking order 30

Price
in field names 36

primary key
mandatory . 16

progress indicator 28
properties

setting from C/AL 16
property

ButtonBorder 38
DelayedInsert 20
DrillDownFormID 19
Editable . 16, 18
InlineEditing 18
InsertAllowed 18
Local . 25
LookupFormID 18, 19
ModifyAllowed 18
ProcessingOnly 32

Property Sheet 32
PropertyOnly . 32

R
record variables

order of . 6
REPEAT-UNTIL

indentation . 11
line placement 11

reports
naming . 35
numbering 46, 47

S
semi-editable . 18
semi-editable tabular forms 18
solution

copying from base application 15
spacing . 2

array . 2
binary operator 2
comments . 4
unary operator 2

STRMENU . 32
structure . 10
subform

setting properties for 18

T
table

accessing . 29
table functions

placing in tables 19
table locking

journals . 30
ledger entry and register 31
lines and headers 30
non-posted lines and headers 30
order of . 30
posted and unposted tables 30

table relation
and system tables 18

table relations
and field names 37
validating . 17

TABLENAME . 26
tables

naming . 35
numbering 45, 46
related, fields in 49

tabular form . 18
naming . 35

templates
journal . 30

terminology
when translating 19

terminology (C/AL) 34
terminology (objects)

C/SIDE functions for reviewing 34

Index
Text (field type) 17
text constant . 8
total

calculating in reports 19
translating . 19
translation errors 19
TransportFooter 19
TransportHeader 19

U
unposted tables

locking order 30

V
validating

table relations 17
variables

local . 25
naming . 39
order of . 2, 6

W
WHILE-DO

indentation . 12
WITH-DO

and object names 14
nesting . 13
structure . 13

	Table of Contents
	Programming Conventions
	1.1 General C/AL Programming Format
	General Rule
	Spacing
	Alignment
	Splitting Lines
	Aligning Parentheses

	Using Parentheses
	Comments
	Use Symbolic Values
	Parameters
	Order in Expressions

	Order of Variables

	1.2 Multilanguage Functionality
	Code Base Language
	Name Property
	Text Constants
	Caption Rather Than Name
	Option Buttons
	Option Strings

	1.3 C/AL Statements
	IF-THEN-ELSE
	BEGIN-END
	REPEAT-UNTIL
	WHILE-DO
	CASE
	WITH-DO

	1.4 Miscellaneous
	Keep it Simple
	Activating Objects
	Copying Solutions
	Setting Properties
	Editable=No on FlowField®
	Disabling FIelds
	Mandatory Primary Key
	Validating Table Relations
	Programming Lookups

	Field Lengths
	Field Type Code or Text
	Designing Journal Forms
	Using Subforms
	Making Semi-Editable Tabular Forms
	Making Non-Editable Card Forms
	Table Relations to System Tables
	Form Evaluation Order
	Translating Objects
	Table Functions
	FormIDs on Tables
	Calculating Totals in Reports
	Never Stop in OnModify
	Placing Fields on Forms
	Card Forms
	Tabular Forms

	1.5 User-Defined Functions
	1.6 User Messages
	ERROR, FIELDERROR
	MESSAGE
	CONFIRM
	Dialog.OPEN
	Table Access

	1.7 Table Locking
	Locking Orders
	Journals
	Non-Posted Lines and Headers
	Posted Lines and Headers

	1.8 Putting Functions in Objects

	Naming Conventions
	2.1 General Guidelines
	2.2 Visible Named Items
	Naming Objects
	Table Objects
	Form Objects
	Report Objects

	Table Fields
	Form Buttons
	Routing Choice
	Action Choice

	2.3 Other Named Items
	Codeunit Objects
	Variables
	Object Variables
	User-Defined Functions
	Form Controls

	2.4 Abbreviations

	Numbering Conventions
	3.1 The Numbering System
	Objects
	Fields

	3.2 Objects
	Tables
	Forms
	Reports
	Reports and Batch Jobs
	Similar Reports

	Codeunits
	Journal Posting Codeunits
	Invoices

	3.3 Table Fields

	Developing Add-on Applications
	4.1 Protecting Objects
	4.2 Changing Base Application Objects - General Guidelines
	4.3 Changing Table Fields
	4.4 Changing Reports
	4.5 Changing Form Controls
	4.6 Changing C/AL Code

	Index

